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PREFACE

The design of hypersonic vehicles has stimulated a large number

of fluid-mechanical studies concerned with the hypersonic boundary

layer. This Memorandum enlarges the scope of these studies to include

various models for the fluid viscosity, the effect of high mass-injec-

tion rates at the stagnation point, and solutions at the hypersonic

limit where the free-stream velocity is very high. These results

should be useful as a guide in the design of vehicles operating at

hypersonic speed.

This study is one of a series dealing with the hypersonic laminar

boundary layer, and part of continuing RAND research in theoretical

fluid mechanics.
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SUMMARY

This Memorandum presents certain numerical solutions to the lami-

nar boundary-layer similarity equations which illustrate the effects

of Prandtl number, viscosity-temperature variation, mass transfer,

wall temperature, pressure gradient, and hypersonic parameter a on the

structure of the boundary layer and the derivatives of velocity (shear

force) and total enthalpy at the wall.

The results show that the common boundary-layer simplifications

(such as Prandtl number = 1, viscosity proportional to temperature,

zero pressure gradient) often lead to numerical errors of 20 to 50 per

cent in the predicted heat transfer, skin friction, and displacement

thickness. The shear and enthalpy gradient are shown to depend on the

form of the viscosity-temperature relation, the Prandtl number, and the

hypersonic parameter a. Results for high surface mass-injection rates

at the stagnation point indicate that the shear at the wall does not

vanish as in the case of a flat plate.
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I = transformed displacement thickness, f f'(l - f') dq
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T = temperature

T - stagnation temperature
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t n normalized temperature, T/T 0
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a - hypersonic parameter, ( 2 /2H )u /u )
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Subscripts and Superscripts

aw = evaluated for 0' = 0
w
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I - derivative with respect to T

o = evaluated at the stagnation temperature To
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I. INTRODUCTION

In most physical situations, the laminar boundary layer which de-

velops along the surface of a body in high-speed flow does not behave

in an exactly similar manner. That is, the mathematical restrictions

necessary to reduce the partial differential equations governing bound-

ary-layer motion to ordinary differential equations in transformed co-

ordinates are not exactly satisfied. Of the several concepts which

have been proposed to deal with such circumstances, local similarity

is perhaps the most successful. The local similarity concept assumes

that at every streamwise station the boundary layer adjusts to changes

in the geometric and thermodynamic boundary conditions and is identical

in all essential respects to the similar-solution boundary layer whose

history includes the local boundary conditions.

In this context, similar solutions to the laminar boundary-layer

equations are of great utility in predicting the skin friction, heat

transfer, and boundary-layer displacement thickness for a wide variety

of "smooth" body shapes. A large number of solutions to the low-speed

and stagnation-point boundary-layer problems have been published, but

little systematic work has been done on the important effects of vis-

cous dissipation with Pr 0 1 and variations of the (pp) product with

temperature. The lack of adequate solutions is particularly evident
(22He 2 *

in the hypersonic limit, a -(u2/2He) (ue/u.) _ 1.

This Memorandum presents selected numerical solutions to the lam-

inar boundary-layer similarity equations which illustrate systemati-

cally the effects of Prandtl number, viscosity-temperature variation,

mass transfer, wall temperature, pressure gradient, and hypersonic

parameter a on the structure of the boundary layer and the derivatives

of velocity and total enthalpy at the wall. It will be found that the

common boundary-layer simplifications (such as Pr - 1, Plk - constant,

or 0 - 0) often lead to numerical errors of 20 to 50 per cent in the

predicted heat transfer, skin friction, and displacement thickness.

The quantity a will be referred to as the "hypersonic parameter,"
and a -' 1 will be called the "hypersonic limit."
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Furthermore, the shear and enthalpy-gradient profiles in the boundary

layer depend strongly on the assumed form of the viscosity-temperature

relation and the Prandtl number, and also on the hypersonic parameter

a.



-3-

II. THE SIMILARITY EQUATIONS

The partial differential equations governing the two-dimensional

compressible laminar boundary layer in a perfect gas may be reduced to

the following pair of coupled ordinary differential equations:(
1)*

d -f, + ff" f ' 2 - (1 - tw) a - t -0 (1)
w

d PP "+fe +L (l #) 2f (1-' - 0. (2)

The boundary conditions are written

=0 f' -8 0 ;O f f - constant (3)
w

a f' . 0 1, (4)

where f' is the normalized velocity (u/ue), 8 is the normalized total

enthalpy (H - Hw)/(H e - Hw), and a is the hypersonic parameter

(u/2He)(ue U.)2. The derivation leading to Eqs. (1) and (2) assumes

that both the specific heat c and the pressure-gradient parameterp

are constant; 0 is defined by the equation

P owpwuedx x dPe

" Y Pw'wUex P dx (5)

*The effects of sweep may also be studied in a similar manner;

this increases the number of coupled equations to three, and analogous

results may be obtained. The effects of sweep may be found in Refs.

1 and 2.
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The similarity variable T is defined by

u Y
lI(x,y) = 21)l/2 f p dy, (6)

where

x

W()P= pw w UedX. (7)

Equations (1) - (4) have been solved using standard numerical-

integration techniques. An extensive tabulation of solutions is pres-

ently being prepared by the authors. The typical results reported in

this Memorandum were selected to illustrate the most important conclu-

sions derived from these solutions. Empirical techniques for estimat-

ing effective fluid-property variations across the boundary layer are

also suggested.

The physical significance of the hypersonic parameter can be seen
by noting its structure and position in the energy equation. In Eq.

(2), it is clear that for Pr - 1, the viscous-dissipation term contain-

ing a vanishes. For Pr 0 1, the value of 0 determines to some degree

the role of the viscous-dissipation term in the energy equation. The

hypersonic parameter a is composed of two terms, (u 2/2He) and (u e/u) 2 .

2 e
At the stagnation point, (u e/u) = 0; on the other hand high-speed
boundary layers are characterized by (u e/u ) 2 I if the free-stream

2 - Ivelocity is high, that is, (u0/2H) e 1.
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III. EFFECTS OF THE TEMPERATURE-VISCOSITY LAW

Equations (1) and (2) are greatly simplified if the product (p11)

is constant across the boundary layer. Since p - p(x) only in the

boundary-layer approximation, this requires p TW with w - 1. It

has been shown by several authors (e.g., Van Driest(3) ) that the form

of the viscosity-temperature relation plays an important role in de-

termining the properties of the boundary layer.

Two alternative forms of p(T) have been proposed. These are the

power-law representation

PW 1 (8)
'2

and the Sutherland formula

. (t)3/2 -s+ s (9)Po, L-s+ t_

where s and w are parametric constants, and t - (T/T0).

In view of the fact that Sutherland's law represents an approxi-

mation to the intermolecular potential, the power-law variation of

viscosity appears to be equally suitable as a one-parameter represen-

tation of the viscosity-temperature law, and it offers certain con-

ceptual advantages when dealing with air and other gases at high tem-

perature. The power-law representation, however, provides a less

accurate representation of the function p(T) over an extended range

of temperature.

Two related problems will be considered with respect to the func-

tion .i(T). First, we wish to examine the effects of the temperature-

viscosity parameters w and s on the velocity and enthalpy profiles

within the boundary layer. And second, we wish to demonstrate that

the two parametric forms of the viscosity-temperature law are equiva-

lent, and that they are simply related through the concept of a ref-

erence temperature.
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VELOCITY AND ENTHALPY PROFILES WITH A POWER-LAW VISCOSITY

The effects of changing the exponent in the power-law expression

for the viscosity are shown in Figs. 1 and 2. A value w - 0.7 cor-

responds closely to conventional wind-tunnel conditions, while w - 0.5

represents conditions encountered in hypersonic flight. The value

w - 1 represents the simplification (p) - constant which has been

widely used in studying the laminar boundary layer. The values

- 0.5 and a = 0 are appropriate to axisyuzetric stagnation-point

flow, while 0 = 0 and a = 1 represent the hypersonic laminar boundary

layer over a flat plate.

Several important effects may be discerned in Figs. 1 and 2. First,

decreasing values of w decrease the 0.90 thicknesses of the velocity

and total-enthalpy boundary layers. Second, the variable viscosity

introduces a distinct inflection in the velocity and enthalpy profiles,

as evidenced by a maximum in the derivatives f'() and 8'(q). Since

the existence of an inflection point in the velocity profile is re-

lated to the stability of the laminar boundary layer, this effect may

explain the anomalous result of stability theories based on w = 1 that

the critical transition Reynolds number for a flat plate becomes infi-

nite with a highly cooled wall. The fact that the wall derivatives f"w
and 8' for = 0 are nearly independent of the value of w appears to

w
be fortuitous. The variations of f', f", 8, and 8' with w are consid-

erably reduced at higher values of the wall temperature t .w

EFFECTS OF VISCOSITY LAW ON SKIN FRICTION AND HEAT TRANSFER

One of the purposes of this study is to examine the use of the

Sutherland viscosity law in determining the properties of the hypersonic

laminar boundary layer. In Fig. 3, the effects of pressure gradient,

wall temperature, and the Sutherland constant a on the normalized heat

transfer T' are shown. The normalized heat transfer ' is defined by
w w

G - ( t- 
(10)w w (t a - w

The points where the velocity and total enthalpy reach 0.90 of
their values outside the boundary layer.
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where

t = adiabatic wall temperatureaw

t = wall temperaturew

0' = total enthalpy gradient at the wall.
w

The Blasius result (0 = , Pr = 1, PP - constant) is given for compari-

son. The Sutherland constant s is defined by

SS - -F P (11)
0

where S is a reference temperature for the particular gas under consid-

eration. The constant s W 0.2 for ordinary wind-tunnel conditions, and

s 1 0.02 for hypersonic flight conditions.

The pressure-gradient effect is as expected. If the wall tempera-

ture and Sutherland constant are the same, then an increase of the pres-

sure gradient increases the heat transfer at the wall. The dependence

of the heat transfer on the Sutherland constant increases as the wall

temperature decreases. At a value of t - 0.6, the normalized heatw

transfer 6' is essentially independent of s. If the wall temperature
w

is reduced to t - 0.15, then T' depends strongly on a; the normalized
w w

heat transfer T' increases with increasing s.
w

Figure 4 shows the variation of the normalized heat transfer 6'
w

as a function of the power-law exponent w for the hypersonic limit

O = 1. Here again, an increase in the pressure gradient or the wall

temperature results in an increase in the normalized heat transfer.

The values of 6" seem to be more sensitive to the pressure gradient inw
the hypersonic limit a = 1 and, in addition, are somewhat higher than

they are at a - 0.5. In general, the maximam variation of T" at a
w

given wall temperature and pressure gradient with w or s is less than

30 per cent.

Figures 5 and 6 are included to illustrate the magnitude of the

effects of the viscosity-temperature relation on skin friction and

heat transfer. In Fig. 5, the normalized heat transfer 8' is shown
w

as a function of tw and w. It is interesting to note that the single
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Blasius value 6' - 0.4696 for Pr = w = I and - 0 is a fortuitouslyw
good approximation to the exact value of 6' over a large range ofw
conditions. For any particular choice of conditions, however, such a

simple approximation may be in error by as much as 30 per cent. The

changes in w introduced by variation of the exponent w are of the same

order as those introduced by the pressure-gradienL parameter and the
wall temperature t w . It is important, therefore, that a proper vis-

cosity formulation be used when exact solutions are desired.

The wall velocity gradient f" is strongly affected by pressure
w

gradient, as shown in Fig. 6. This is because the parameter 0 appears

explicitly in the momentum equation (1); the effects of pressure grad-

ient appear in the energy equation (2) only indirectly through the ve-

locity ratio f' - (u/u e). It may be seen in Fig. 6 that the effects

of the viscosity exponent on f" are small compared to the effects in-
wtroduced by the pressure-gradient parameter. The effects of large val-

ues of 0 on the wall shear f" have been studied extensively by Cohen

and Reshotko (4) and others.

RELATION BETWEEN SUTHERLAND AND POWER-LAW VISCOSITY FUNCTIONS

Another purpose of the Sutherland-law investigation was to deter-

mine the relations between solutions obtained using a Sutherland-law

viscosity and those obtained by the use of a power-law t - TW employing

an empirically calculated w . Solutions for specific boundary condi-r
tions were obtained using the Sutherland-law viscosity relationship.

A reference temperature, t , was then used which was originally sug-

gested by Rubesin and Johnson ( ) and modified by Eckert (6) to provide

an approximation method of evaluating the wall conditions for a compres-

sible boundary layer. The Eckert reference temperature is given by

tr = 0.5 (te + tw) + 0.22 (1 - tw) (12)

It should be emphasized that the Sutherland law itself is de-
rived from an empirical approximation to the intermolecular potential.
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and was used to calculate an empirical w from the following formula:
r

lnt w +s

Wr + n (13)
r 2 int

An exact solution to the similar equations was then obtained using the
Wrr

temperature-viscosity relation p - T , and these results were compared

with solutions obtained using the Sutherland law. Figure 7 shows the

differences in the wall derivative fV obtained for some typical cases.
w

Specifically, the graph shows Af" P(s) - f"(w ) plotted as a func-
w w w r

tion of s for different wall temperatures and pressure gradients. The

maximum error is approximately 2.5 per cent in the wall velocity grad-

ient; in most cares, the error is well below 1 per cent. Figure 7 also

shows the effects of the important parameters t and 0 on the differ-w
ences Af" induced by the use of the w calculation. Clearly, the dif-

w r
ferences increase as s increabes, and both the difference function and

a must go to zero together (w r is identically 1/2 for s = 0). For the

cold wall, the difference is greater because the power-law approxima-

tion cannot fit the Sutherland-law viscosity throughout the larger tem-

perature range. These differences are reduced to negligible values

for t > 0.6. The effect of pressure gradient at low wall temperaturew

is also evident: An increase in 0 gives rise to an increase in the

difference function Af". The higher pressure gradient causes the power-
w

law approximation to be a less accurate fit of the Sutherland law. In

general, the differences are quite small even for the cold-wall cases,

and the power-law approximation using the Eckert reference temperature

should prove to be a valuable empirical method.

The values of w as a function of the Sutherland constant s arer
shown in Fig. 8 for the three wall temperatures t a 0.15, t = 0.4,w w

and t - 0.6.w
It can be seen that the empirically determined w is a smoothr

function of the Sutherland constant a, so it will be possible to in-

terpolate for conditions not presented in this Memorandum. When
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0 - 0, w r- 0.5 for all values of t and t . The expression for wr w e r

also shows that increasing the wall temperature reduces the range of

W.
r

0.020
0,: 0o, :5
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0.015 - fw:0

tw 0. 15

Af, 0.010 -.

0.005 ' tw=0.6

0
0 0.1 0.2 0.3

Fig. 7---Wall velocity-gradient differences between
the two viscosity laws
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IV. EFFECTS OF THE PRANDTL NUMBER

The effects of the Prandtl number on the enthalpy and velocity

distributions in the boundary layer are shown in Fig. 9 for the cold-

wall case (tw = 0.15) in the hypersonic limit, a = 1. The velocity

profiles are not noticeably affected, but there is a drastic change in

the enthalpy gradient as well as the enthalpy distribution within the

boundary layer. The wall enthalpy gradient is considerably reduced

when the Prandtl number is decreased from 1.0 to 0.5. The enthalpy

profile is less full for the Pr - 0.5 case, and this has the effect of

concentrating the high enthalpy gradients near the outer edge of the

boundary layer.

In order to demonstrate the effects of the Prandtl number more

decisively, the wall enthalpy gradient 0' and the normalized heat-
w

transfer parameterT' are plotted as functions of Pr in Fig. 10. It
w

is shown in (a) of Fig. 10 that 8' increases with increasing Pr; here,
w

0 - 0, so that the dissipation term appearing in the energy equation

(2) is identically zero. It may be seen that the common assumption of

Pr = 1 for air introduces an error in 8' which is of the same order of
w

magnitude (about 5 - 15 per cent) as the change in 8' due to a varia-
w

tion of the pressure-gradient parameter 0 from 0 to 0.5. It is there-

fore numerically inconsistent (at least for a - 0) to include the ef-

fects of pressure gradient while neglecting the effects of Prandtl num-

ber.

In the hypersonic limit, a = 1, the situation changes dramatically;

(b) of Fig. 10 indicates the variation of 8' with Prandtl number forw
- 0 with and without the viscous-dissipation term. The effects of

Pr and wall temperature, t, on 8' are greatly increased by including
w w

the viscous-dissipation term. This is primarily because of the large

change in the adiabatic wall temperature taw with Prandtl number. A

useful empirical formula which relates the adiabatic wall temperature

taw to the parameters Pr, w, a, 0, and fw is

taw + 1.428 ao -- 1) (1 + 0.290) (1 - 0.3w) (1 - 0.95f).

(14)
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Equation (14) becomes somewhat inaccurate for values of fw < -0.6 and

0 > 0.5, but for moderate values of these parameters the predicted val-

ue of t is correct to better than 1 per cent. From Eq. (14) and (b)aw

of Fig. 10, the important effects of Prandtl number on surface heat

transfer may be seen. The familiar Blasius value 0' - 0.4696 for aw
flat plate with Pr = w = 1 may overestimate the surface heat transfer

in hypersonic flow by a factor of 2 or more, even for a moderately

cooled wall.

The normalized enthalpy gradient T' shows a much smaller changew
with Prandtl number than the gradient e'. It is indicated in (c) of

W
Fig. 10 that the normalized derivative 0' is close to the classical

w
Blasius value even in hypersonic flow. From Figs. 3, 4, 5, and 10,

it may be concluded that classical value e' = 0.4696 is a good approx-
w

imation over large ranges of Prandtl number, viscosity parameter, pres-

sure-gradient parameter, and wall temperature. Combining this result

with Eq. (14), the enthalpy derivative 8' may be determined.' W
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V. EFFECTS OF LARGE INJECTION

Early theoretical calculations for mass transfer into a laminar
boundary layer on a flat plate(7'8 ) indicated the existence of "blow-

off" points, i.e., separaLion of the boundary layer, at high mass-in-

jectign rates. These points were determined by noting the values of= w (Re) for which f" ( 0. Early efforts to cor-w PU x w dy
relatee te exact solutions for the laminar boundary layer on a flat

plate with mass transfer (see, e.g., Gross, et al., (9)) suggested the

use of a linear relationship between the mass-injection parameters fw
and the dimensionless skin friction:

f 1 (15)

where

cf = local skin friction with mass transfer

cf = local skin friction without mass transfer.
0

Extrapolation of this result would give an fw - 0.5 for the blowoff

point where cf = 0. Hartnett and Eckert,(10) Scott,(8) and Hayday ( I I )

showed that a similar blowoff point was not evident in the case of

stagnation-point flows. In Gross, et al.,(9) a comparison is made be-
tween flat-plate, wedge, and stagnation-point flows to show the effects
of pressure gradient on the dimensionless heat transfer O'. The im-w
plication was that a blowoff point for stagnation flows--if it existed--

would occur at a mch greater value of f than for the flat plate.
W

In this study, calculations were carried out to determine the be-

havior of the velocity gradient and the enthalpy gradient at the wall

for a stagnation-point boundary layer for large values of the blowing

parameterl fw [  The results shown in Fig. 11 indicate that the solu-

tions are asymptotic and that a blowoff point is never achieved, even
though the values of the enthalpy gradient become quite small. It
seems clear from the calculations that ft, will approach zero only at

w
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Fig. 11 --- Wall velocity gradient and heat transfer with
large injection: two-dimensional stagnation point
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very large values of -f w. Figures 12 and 13 show the development of

the profiles for the velocity and enthalpy and their gradients for in-

creasing values of the mass-transfer parameter I fw I. The solid-wall
profiles have been included for comparison. It is interesting to note

the drastic effect of the mass-transfer parameter in shifting the peak

enthalpy toward the outer edge of the boundary layer. The increase in

the thickness of the boundary layer with mass injection is graphically

illustrated in these figures.
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VI. BEHAVIOR OF THE BOUNDARY LAYER IN THE HYPERSONIC LIMIT

The influence of the hypersonic parameter a - (u"2 /2He ) (u e/U. ) 2

on the wall shear fiw, the normalized enthalpy gradient e'w' and the dis-

placement-thickness integral I1 is considered in Figs. 14 and 15. The

ordinate is given in terms of the ratios

w w 1
,r ae -' aI) 1

where the subscript a = I indicates a value for the hypersonic limit

a - 1 [T e T - 0) . The integral I is related to the displacement

thickness 6 by theeqain()

6*= 2 ~ ~2 I _(! T 2] (16)
w e e0-l f.2(uo)( )]d;(7

0

1 2 f'(l - f') dq. (18)
0

For the hypersonic boundary layer, (To/Te) - 1 2 > 1, and 6*

is very nearly proportional to the product Me 1.1

The ratios of fP, 0', and I increase with increasing values of
wW1

a. The maximum change in the ratios is about 20 per cent between a - 0

and a - I. One important conclusion may be immediately drawn: The

similarity requirement that the ratio (ue/u.)2 be constant along the

body surface is not a severe restriction, since large changes in this

quantity (i.e., in a) do not have a proportionately large effect on

the boundary-layer solutions.
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Fig. 14---Influence of hypersonic parameter a- on skin friction,
heat transfer, and displacement thickness: tw 0 . 15
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Fig. 15---Influence of hypersonic parameter o- on skin friction,
heat transfer, and displacement thickness: tw - 0. 60
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The change in f", 8', and 11 with a is nearly independent of .
w

A comparison of Figs. 14 and 15 shows that the ratios suffer a larger

change with a lower wall temperature. From Eq. (14), and Figs. 14

and 15, it may be deduced that the enthalpy derivative 81 decreases
w

with increasing a, and the variation is greater with increasing wall

temperature.



-28-

VII. CONCLUDING REMARKS

The results of this study may be succinctly stated as follows:

1. The effect of changing w in the power-law viscosity p TW

on the enthalpy and velocity profiles is most important for low wall

temperatures. Differences of 20 - 30 per cent in predicted heat trans-

fer and skin friction for 0.5 6 w 1 1 are observed at t - 0.15.w
2. The effect of varying the Prandtl number on the enthalpy dis-

tribution in the boundary layer is important for low wall temperature

(t w 1 0.15) and large values of the hypersonic parameter a.

3. The laminar boundary layer at a stagnation point for a cold

wall does not "blow off" or separate even at high blowing rates. Cal-

culations indicate that e' - 0 much more rapidly than f", and that for
w W

f < - 1.2, O'w V 0, while f" is finite.
w w w

4. The numerical solutions show that the viscous-dissipation

term has, at most, a 10 - 20 per cent effect on the wall shear f".
w

the displacement thickness 11, and the normalized enthalpy gradient

0.; these three quantities reach a maximum value for 0 -' 1, i.e., in

the hypersonic limit.

5. If the enthalpy gradient 8' is normalized to T' where
w w

= (1 -tw)

w w (taw- tw)

then the function 1' is only weakly dependent upon the Sutherland con-
w

stant a. In general, 6' increases with both wall temperature t and
w w

pressure-gradient parameter .

6. The boundary-layer characteristics calculated using a Suther-

land-law viscosity can be approximated almost exactly using a power-Wr

law viscosity p a T if the w is determined empirically from ther
equation

Third term on left side of Eq. (2).



-29-

rr

constant for the gas.



-31-

REFERENCES

1. Dewey, C. F., Jr., "Use of Local Similarity Concepts in Hypersonic
Viscous Interaction Problems," AIAA J., Vol. 1, 1963, pp. 20-33.

2. Beckwith, I. E., Similar Solutions for the Compressible Boundary
Layer on a Yawed Cylinder with Transpiration Cooling, NASA
TR-R-42, 1959 (supersedes NACA TN-4345, 1958); see also E.
Keshotko, and J. E. Beckwith, Compressible Laminar Boundary
Layer over a Yawed Infinite Cylinder with Heat Transfer and Ar-
bitrary Prandtl Number, NACA Report 1379, 1958 (supersedes NACA
TN 3986, 1957).

3. Van Driest, E. R., Investigation of the Laminar Boundary Layer in
Compressible Fluids using the Crocco Method, NACA TN 2597, 1952.

4. Cohen, C. B., and E. Reshotko, Boundary Layer with Heat Transfer
and Pressure Gradient, NACA Report 1293, 1956 (supersedes NACA
TN 3325, 1955).

5. Rubesin, M. W., and H. A. Johnson, "A Critical Review of Skin-
Friction and Heat-Transfer Solutions of the Laminar Boundary
Layer of a Flat Plate," Trans. ASME, Vol. 71, 1999, pp. 383-
388.

6. Eckert, E.R.G., "Engineering Relations for Heat Transfer and
Friction in High-Velocity Laminar and Turbulent Boundary-Layer
Flow over Surfaces with Constant Pressure and Temperature,"
Trans. ASME, Vol. 56, 1956, pp. 1273-1283.

7. Gross, J. F., Skin Friction and Stability of a Laminar Binary
Boundary Layer on a Flat Plate, The RAND Corporation, RM-3485-PR,
January 1963.

8. Scott, C. J., The Application of Constant Property Solutions to
Mass Transfer Cooling Calculations, Rosemount Aeronautical Lab-

oratories, University of Minnesota, Engineering Memorandum No.
76, December 1958.

9. Gross, J. F., J. P. Hartnett, D. J. Masson, and Carl Gazley, Jr.,
"A Review of Binary Boundary Layer Characteristics," Int. J.

Heat and Mass Transfer, Vol. 3, No. 3, 1961, pp. 198-221.

10. Hartnett, J. P., and E. R. G. Eckert, Mass Transfer Cooling in a

Laminar Boundary Layer with Constant Fluid Properties, Univer-
sity of Minnesota Heat Transfer Laboratory Technical Report No.
4, 1955.

11. Hayday, A. A., Mass Transfer Cooling in a Laminar Boundary Layer
in Steady Two-Dimensional Stagnation Flow, University of Minne-

sota Heat Transfer Laboratory TN 19, April 1958.


